

IOTA and the TANGLE

Guglielmo Morgari

Telsy SpA and Politecnico di Torino

De Cifris Augustae Taurinorum, 18 June 2021

Talk Overview

Introduction to IOTA

The tangle

- validation
- confirmation
- double-spending
- tip selection

Attacks

Cryptography

The coordinator

What next (IOTA 1.5 and IOTA 2.0)

Open issues

IoT and Blockchains

IoT networks are typically made of a **huge number** of **low-power** devices **frequently** issuing **low-value** micro-transactions

Parameter	Typical blockchain	loT needs
Throughput	Low (mining bottleneck)	High
Finalization Time	High (wait for N blocks)	Low
Cost (per-transaction)	High (fees)	Low
Decentralization	Questionable (too powerful mining pools)	Desirable
Sustainability	Unacceptable energy consumption (PoW)	Desirable

Current blockchain technology is not well suited for IoT world

IOTA aims to fill the gap

ΙΟΤΑ

- Created in 2015
 - by David Sønstebø, Dominik Schiener, Sergey Ivancheglo, and Serguei Popov

• Focused on Internet of Things (IOT)

- · physical devices able to collect, process and exchange data
- Supported by IOTA Foundation
 - established 2017, Berlin. No profit organization

- Partnerships and collaborations with Industry and Academia
 - Jaguar Land Rover, STM, Dell, Ubuntu/Canonical, Innogy, Microsoft, Cisco, Foxconn, Bosch, ...

Some Numbers

- Fixed circulating supply
- 2.779.530.283.277.761 iota tokens
- Completely generated in the first special transactions (Genesis)

• MIOTA current value = \$1.08

The Tangle

- IOTA is based on a Direct Acyclic Graph (DAG) structure (tangle)
- Transactions as nodes, validations as edges

- Validation between transactions can be direct ($B \rightarrow X, X \rightarrow Y$) or indirect ($B \rightarrow Y$)
- A not-yet validated transaction is named tip (B, C, D, E)

- Any new transaction must validate two old transactions (hopefully tips)
- To validate a transaction means to check its correctness
- A correct transaction must
 - be well formed
 - be correctly signed with the sender's private key
 - include a (relatively simple) proof of work
 - be consistent with its cone of past transactions
 - i.e. all the transactions directly or indirectly validated back to the Genesis
 - basically checks balances are always non negative and consistent
 - be consistent with the other selected transaction and its cone of past transactions
- Validation effort can be significant

A validates B and C and becomes a new tip

Tangle vs Blockchain

Double Spending (I)

B and F conflicting, B (indirectly) validating F B tip cannot be chosen for validation by A

Double Spending (II)

B and F conflicting The (B, C) tips pair cannot be chosen for validation by A

Double Spending (III)

Conflicting transactions (double spending) can coexist in the tangle How to know which one is "good" (consensus problem)?

Confirmation

- When can a transaction in the tangle be considered "safe"?
- How to define a "confirmation level"?
- Suggested strategy:
 - count how many tips directly or indirectly validate the transaction
 - check if a given threshold (according to the context) is reached, e.g.
 - 70% confirmation confidence: ok for small valued transactions
 - 100% confirmation confidence : required important transactions
- Rationale:
 - The more tips confirm a transaction, the more it is deep in the tangle and unlikely to be later discarded

Confirmation

Tip Selection

- Each new transaction must validate two existing transactions
- It is suggested that these transaction are tips, but it is not mandatory

Tip Selection

- Each new transaction must validate two existing transactions
- It is suggested that these transaction are tips, but it is not mandatory
- Selfish users may choose to validate old transactions ("lazy tips" issue, see A)
- No verification effort required, useless to help the tangle to grow (no new transactions are validated)
- Lazy tips must be discouraged!

Tip Selection

- How to discourage lazy tips?
 - Define a Tip Selection Strategy such that lazy tips are unlikely to be later validated
 - This way such tips will have low confirmation confidence and are thus penalized
- No guarantee that users follow any specific strategy
- But the one implemented in the reference code is likely to be dominant
- It is expected that the vast majority adopt it
- Two strategies proposed in IOTA white paper
 - Uniform Selection
 - (Unweighted / Weighted) Random Walk

Uniform Random Tip Selection

- Tips are uniformly randomly chosen
- Lazy tips are not penalized (A is as likely to be chosen as B, C, D and E)
- Users are encouraged to adopt selfish behaviour

Bad strategy choice!

Random Walk

- Start from the Genesis
- Follow a random walk over the tangle through transactions

- Transition from X to Y is possible if and only if X is validated by Y
- When a tip is reached, select the tip and stop

Cumulative Weight

Given a transaction X, a (somehow defined) weight (X) is associated to X

cumuluative weight (X) = weight(X) + \sum_{z} weight(z) z \in Z = {set of transactions directly or indirectly validating x}

if we set weight(X) $\stackrel{\text{def}}{=} 1$

cumulative weight (X) = 1 + #{transactions directly or indirectly validating X}

Cumulative Weight

Cumulative weight of X = 1 + #{transactions directly or indirectly validating X}

Transition probability from X to Y

 $P_{XY} = \frac{e^{-\alpha(H_X - H_Y)}}{\sum_z e^{-\alpha(H_X - H_Z)}}$

 $\begin{aligned} &H_x = \text{cumulative weight of } x \\ &\textbf{z} \in Z = \{ \text{set of transactions directly validating } x \} \\ &\alpha = \text{Random Walk parameter} \end{aligned}$

IOTA and the Tangle ("De Cifris Augustae Taurinorum", 18 June 2021) Guglielmo Morgari

Telsy

IOTA and the Tangle ("De Cifris Augustae Taurinorum", 18 June 2021) G

Guglielmo Morgari

📰 Telsy 🙀

Weighted Random Walk Comparison

Attacks

- Many different (similar) attack models
 - Large weight attack
 - Parasite chain
 - Splitting attack
 - ...
- All of them eventually aim to double spend
- A correct mix between network access and computation power is required for the attacker
- In general «51% attacks» cannot be avoided

Basic Attack

The attacker

- creates a transaction T1 and waits until it is accepted (i.e. "spent" in the real world)
- creates a new double-spending transaction T2, causing two branches in the tangle
- issues many transactions validating only T2

If the attacker is poweful enough

- T2 branch will have cumulative weight higher than T1 branch
- T2 branch will become the main branch in the tangle and T1 branch will be discarded

Otherwise Random Walk Tip Selection will prevent the attack

- the attacker is not able to make T2 cumulative weight grows quicker that T1's one
- when a bifurcation between T1 and T2 is found, T1 is thus likely to prevail

Cryptography

• Private and public keys (addresses) derived from seeds (~384 bits long)

• Signature algorithm

- Winternitz One-Time Signature Scheme
- Hash based \rightarrow Quantum Resistant
- Reveals a key portion each time a signature is published
- Address reuse compromises private key
 - Each address can be used only once to withdraw iotas!

• Hashing algorithm

- Curl (original scheme): vulnerable to a differential cryptanalysis attack
 - Used for PoW
- Kerl (more conservative scheme, based on Keccak)
 - Used for address generation and signature creation/verification

The Coordinator

Trits and trytes

• Number of iotas

2.779.530.283.277.761 = (3^3-1)/2

- Information basic unit is the trit {-1, 0, 1}
- Trits are encoded in trytes
- 1 tryte = 3 trits
- 1 tryte in {A, B, C, ... Z} U {9}: 27 possible values

Transaction in the Tangle

	Q Mainnet	
General Confirmed by MS 3430973 Saturday, March 27, 2021 2:42 PM - 18 hours ago	Content	
	TAG CRYPTOCONFERENCE9999999999 C MESSAGE ASCII C	
0 ADDRESS	CrypTO Conference 2021 May 27-28, Politecnico di Torino https://crypto.polito.it/conference 14	
	Parents BA999164999999999999999999999999999999999	993
	TRUNK 0	
BUNDLE HASH WGKNNPOFYZLG9NZLWWIVIJUBKHBMDVZRUJJAVZ9SDGQXLKVFZYEGNDCNXBYLFBGKKP9VRENEHTWFCNQBY	PMCTTBWINAHNALNTPBHYZOTVSS ATTACHMENT UPPER BOUND PBLFAZPYIKRSP9V9EKSKHDGVCTM ATTACHMENT UPPER BOUND GRSDHLGYFMOZLJXXBHLCLQHZ99 3812798742493 BRANCH ATTACHMENT TIMESTAMP XH9UGHVIAZIVJRJEEUZRQWECQJIJ Saturday, March 27, 2021 2:42 F WUWSEXYXLUBBMHDCJDKDIIKVNA Saturday, March 27, 2021 2:42 F	PM - 1

Roadmap

Open Issues

• Scalability and decentralization

- Low power devices may be unable even to make signatures and PoW. Need of a trusted proxy?
- Most IoT devices are *light nodes*, unable to store the full tangle
- Tangle management (tips selection and validation) is thus left to full nodes
- Who will maintain full nodes (core to the system)?
- If traffic (hopefully) grows, only most powerful nodes will be able to manage it
- [today] coordinator-based (should be coordicided soon)
- PoW
 - May be an issue for low-power devices
 - Is it a hidden fee? If weight is allowed to be > 1 and is related to PoW, more powerful nodes will pay a higher fee to make their transactions more likely to be confirmed

Open Issues

• Questionable theoretical model and assumptions

- Stationary Poisson distribution for incoming transactions
- All the devices have the same computing power
- Big number of less powerful IoT devices out-compute attacker's dedicated high-power machines

Scenario evolution

- Only time will tell if IOTA's underlying assumptions fit the actual scenario in the next years (decades?)
- Hard to predict network behaviour as traffic grows
- Current situation say little about the future (conditions are going to change a lot)

The End

Thank you! Questions?

guglielmo.morgari@telsy.it guglielmo.morgari@polito.it

